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Abstract — As it cools the solidified part of an ingot contracts and creates a small gap between the ingot and

its mould. Equations are formulated which account for the existence of such a gap in which the heat transfer is

presumed purely radiative. Numerical solutions show that the presence of the gap increases the time of

complete solidification and accounts for previous underestimates of this time as compared with observations
in the steel industry.

NOMENCLATURE
a, inner radius of mould;
b, outer radius of mould;
C,.  specific heat;
k, thermal conductivity;
7, radial co-ordinate;
t, time;

te time of complete solidification;
Bi, Biot number;

E, interface position;

L, latent heat of fusion;

T, temperature

T,,  environmental temperature;
T*, preheat temperature;

T;, fusion temperature;

o, ratio of emissivities, ot = £,/8, = £,3/¢0;

H, =1-/(a/b);

B, = L/C,AT;

' heat-transfer coefficient;

AT, AT=T,-T;

g(r}, non-dimensional penetration;

€0 emissivity of outer surface of mould;

g,  emissivity of inner surface of mould;

&2, emissivity of ingot surface;

¢, dimensionless co-ordinate;

", dimensioniess co-ordinate;

K, thermal diffusivity;

0, density;

g, Stefan-Boltzmann constant;

T, dimensionless time, T = tx/a?;

0, dimensionless temperature.

Superscript

*, relates to a mould quantity.

INTRODUCTION

ABUNDANT interest in solidification problems exists
because of the wide range of physical processes in
which the phenomenon is important. Of particular
interest is the manner in which ingots solidify in iron,
steel and brass foundries. Ingots are often modelled by
infinite cylinders for which the heat-transfer equation
has been solved subject to a variety of boundary

conditions. The simplest case when the outer surface is
maintained at a prescribed constant temperature has
been the subject of considerable attention, e.g. [ 1]-[4],
but the continued interest is largely due to the
existence of a mathematical singularity at the final time
of solidification {finally resolved by Stewartson and
Waechter [4]) rather than any practical use. More
interesting physically is the work of Goodling and
Khader [5] who imposed a combination of Newton
cooling and Stefan’s law at the boundary and solved
their equations numerically. However although there
is no way of making these boundary conditions more
realistic the model underestimates the time of complete
solidification compared with observations in the steel
industry, see Ruddle [6]. An obvious simplifying
feature as compared with foundry practice is the
absence of a containing mould but inclusion of this, see
{7], does not account for the underestimation. Ano-
ther simplification in most of the work referred to so
far is that the moiten metal is presumed to be initially
at its fusion temperature T, whereas the molten metal
must be poured at a higher temperature (typically
20°C in the case¢ of steel), but this too adds only
marginally to the time of complete solidification.

In this paper the effect of shrinkage is included in so
far as it gives rise to a narrow gap between the outer
surface of the solidifying ingot and the inner surface of
the mould. The gap undoubtedly exists, see [6] and
[8], being created as the solidified phase cools and
contracts. There is also associated contraction of the
mould (after perhaps initial expansion) but the greater
heat Joss and greater contraction occur in the ingot.
The mechanism for the contraction does not enter
the calculation because the heat transfer across the gap
is presumed purely radiative and hence the precise gap
width is not relevant when calculating the heat trans-
fer. Instead a gap is assumed to exist, that the heat
transfer is radiative between the ingot and inner mould
surface but any changes in the overall dimensions are
ignored when specifying where the boundary con-
ditions apply.

THE GOVERNING EQUATIONS
The molten metal is initially at its fusion tempera-
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ture T, and contained in a sleeve mould with internal
and external radii a and b respectively. The tempera-
ture within the mould at any instant of time r is
denoted by T*(r,t), where r is a measure of distance
from the axis of the mould, and initially this is
prescribed as T¥r). The mould is situated in an
environment at temperature T(< T;) so as time
proceeds heat is drawn through the mould and the
molten metal solidifies inwards; the location of the
solid-liquid interface is denoted by r=a — E(1),
where E(f) is the depth of penetration, and the
temperature in the solidified phase by T(r,).

Heat transfer within the ingot and mould is due to
conduction and thus T{(r,t) and T*(r,t) satisfy
r%—?), a—-Et)<r<a, (1)

(6T*> <r<bh 5
= k¥ AR
ot rér\ or | asr )

where x and k* are the thermal diffusivities of the
solidified metal and the mould respectively : in general
starred quantities relate to the mould. These equations
are solved subject to the following conditions.

At the outer surface of the mould heat transfer is
modelled by a combination of Stefan radiation and
Newton cooling,

— (aT*) = §(T*~T)

oT*

or

+ eoo(T** ~ T4, r=b, (3)
where k* is the thermal conductivity of the mould, y is
the heat-transfer coefficient, ¢, the emissivity of the
outer mould surface and ¢ the Stefan-Boltzman
constant.

Heat is radiated between the surface of the ingot and
the inner surface of the mould according to

T*
_k<§__ =(;10'T4—826T*4= “k*(a , r=a,
ar o

(4)

where k is the thermal conductivity of the metal, ¢, and
¢, are surface emissivities of the metal and the mould
inner surface, and the gap is presumed to have
negligible width so that the temperature gradients are
both evaluated when r = a.

At the liquid/solid interface, continuity in
temperature and liberation of latent heat yield
T=T,, r=a-E) 5)
k @1 pL@, r=a — E(t) (6)
ar dt

where p is the density of the metal (presumed constant)
and L is the latent heat of fusion.

The system (1)-(6) is non-dimensionalized by
introducing
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r=" )= By, &=
h —u
{7}
a~—r T* . T
f o= —— R
ae(t) T, T,

which have the effect of defining the mould by
0< <1 and the solidified part of the ingot by
0 € n € 1. In terms of the new variables the problem is
characterized by

k b*H?06* o%0* H 00* ®
o a e ad Tl HE g ’
0<Eg,
a8 8% ( (1) o0
(1) e = ATIET) — e (D
#e) ot ont t .\m(x)[(ﬂ [ m:{*c})@r; ®)
0<yp<g 1,

subject to the conditions
00" + Bift., + 4 JH*“
GE Jeuy 0 T AT

T \? VRS

6 g*2 4( 3 9*%

’ (T> #4(57) ¢
26* T

9+ 4493 o( ) 2

(az:): { Ay o) 0

+ 4( §T> o+ (ATTY}:;:U

T T \?
6%+ + 45 %3 6( ) g**
{ HRYY A AT,

i) e (Zﬂ L

ale ge
AT

=0 {10)

(1

k /b o8 [aé
EON®) ™)
kK*\a  \0n/,= xfc
=1 atnp=1 {13}
a6
(v> = fe(t) &{1) {14}
67} n=1

where H = 1 — (a/b), Bi = y(b — a)/k* is the Biot
number, AT =T, — T,. A; = (b ~ a)oe(AT)’/k* are
the radiation parameters (i = 0,1,2) and p = L/C AT
is the inverse of the Stefan number.

METHOD OF SOLUTION

Assuming the position of the interface and thermal
distributions &y, 8y and 6% are known at time 7 = 1y
the corresponding values at © = Ty, = 1y + dt are
deduced by applying the Hartree- Womersley scheme
[9] In this method time derivatives are replaced by
differences of the type (80/é1) = (6y,, — Oy)/drand all
other quantities by averages. The resulting ordinary
differential equations for 8y, , and 6%, together with
all the boundary conditions are linearized and the
entire set of linear equations solved simultaneously as
part of the inner iteration. Convergence of the inner
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iteration gives the values of By, 1, 0% ., and ey ., which
are then used in the outer iteration in place of 8y, 6%
and ¢y. The inner iteration involves only two or three
steps, while the number of outer iterations depends on
the size of the time increment ét. The scheme is started
when 7 =0 and ¢ =0 and continued until e =1 at
which time the region r < g is completely solidified.
When ¢ = 1 a singularity can be noted in equation (9)
so in practice the numerical scheme does not reach
¢ =1 but by taking smaller and smaller time incre-
ments as ¢ — 1 (necessary anyway to retain accuracy)
any tolerance can be prescribed for the final time of
solidification, ;.

THE INITIAL TEMPERATURE DISTRIBUTION
IN THE MOULD

The preceding algorithm is complete for moving
from the solution at T = 7y to that at t = 1y, ;all that
is required to completely determine the problem is the
precise form of 8*(£,0), i.e. the non-dimensional form
of T¥(r). In practice a mould is often preheated to
avoid supercooling of the first drops of molten metal
poured into the mould; assuming the initial
temperature of the inner mould surface is T¥ an
appropriate form of T#(r) is obtained by solving the
steady state version of (2) subject to the outer wall
condition (3) and the inner wall condition T{{a) = T¥.
The non-dimensional temperature then has the form

6* = Clog(l — Ht) + D,

where C and D are constants obtained from the
boundary conditions. Since T¥ < T; there is an initial
singularity (just as in the case of a constant outer
temperature without a mould) and though this leads to
a small numerical oscillation about the true solution
this is a stable process which does not affect the time of
complete solidification.

DISCUSSION OF RESULTS

Results are presented which are particularly
relevant to a range of steel ingots in production today.
Ingots are not perfectly cylindrical but rather more
square in section with rounded corners ; nevertheless a
cylinder is an appropriate model and the dimensions
shown in Tables 1 and 2 give the same cross-sectional
areas as the moulds in common use. Having specified
the thermal properties and the overall dimensions the
remaining parameters which have an effect on the
solidification time are T, T¥, ¢, and ¢,.

Although the inner and outer surfaces of the mould
may have different values for the emissivity, due to
possible sedimentation on the inner surface, the most
reasonable assumption is  that g, =g, =g,
Nevertheless it is instructive to consider the effect of
varying the parameter o, o == g,/g, = £,/6o, as this
clearly shows the importance of the gap, because with
o = 1 we have the previously mentioned reasonable

*Private communication from British Steel Industry,
Scunthorpe.
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Table 1. Ingot sizes and the theoretical times of complete

solidification
Ingot size Equivalent radii t,
{t) for cylindrical model {min)
7 a=037m 157
b=043m
8 a=038m 165
b=0458m
10 a=0432m 197
b =0.554,

Table 2. Theoretical times, in minutes, for
solidification of a 7t ingot for various
environment and preheat temperatures

T.
T* 20°C 100°C
20°C 1550 1554
100°C 1570 1574
200°C 161.8 162.2
xt‘rs}i‘nutes* A
150
WO k— v s v g
o] 5 10 15
——
o

Fic. 1. Variation of solidification time, t,, of a 7t ingot with
the parameter a.

assumption and letting & — oo corresponds to the
absence of a gap. Figure 1 shows this variation for the
particular case of a 7t ingot when T, = 20°C and
T} = 100°C; the time of complete solidification when
=1 is approximately 239 longer than the
asymptotic value as o — oo and illustrates the
important qualitative effect of including the gap. Table
1 displays the times of solidification with « = 1 for the
various ingots, in particular the mould predicts
t,=197min which may be compared with the
observed time of 195 min*. It should be noted that
o =1 is not chosen as a “fudge factor”, rather x = 1
seems the most appropriate value and hence the model
appears to be quantitatively correct, This confirms the
claim of Massey and Sheridan [8] that pure radiation
is the correct model; the importance of conduction in
the gap could be assessed by solving the integro-
differential equation governing combined radiation
and conduction in the gap as outlined by Hobson [10],
but for the sake of this paper the noted agreement is
accepted as sufficient confirmation.

Having established the major point about the
importance of the gap and accuracy of the model it is
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interesting to consider variations in the other
parameters which may affect the total time of
solidification which itself has an effect on the physical
properties of the material. The environmental
temperature T, can vary for different ingots depending
on whether they stand alone in a cool part of the
foundry or adjacent to other hot moulds; Table 2
shows that the times are not changed by any
appreciable amount. Table 2 also shows that
preheating the mould has only a marginal effect on «_;
another expected result because the rate of
solidification is dependent on the amount of heat
which needs to be transferred through the mould and
the majority of this is the latent heat liberated as the
metal solidifies.
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L’EFFET DU RETRAIT SUR LA VITESSE DE SOLIDIFICATION
D’'UN LINGOT CYLINDRIQUE

Résumé — Lors du refroidissement, la partie solidifiée d’un lingot se contracte et il en résulte un petit espace

entre elle et le moule. Des équations sont établies qui tiennent compte de P'existence d’un tel espace dans

lequel le transfert thermique est supposé purement radiatif. Des solutions numériques montrent que la

présence de cet écart augmente le temps de la solidification compléte et rendent compte des sousestimations
antérieures de ce temps, en accord avec les observations dans les aciéries.

DER EINFLUB DES SCHRUMPFENS AUF DIE
ERSTARRUNGSGESCHWINDIGKEIT EINES ZYLINDRISCHEN BLOCKS

Zusammenfassung—Durch Abkiihlung zieht sich der erstarrte Teil eines Blocks zusammen und erzeugt

einen schmalen Spalt zwischen dem Block und seiner Kokille. Es werden Gleichungen aufgestellt, welche die

Existenz eines solchen Spalts beriicksichtigen, in dem Wirmeiibertragung ausschlieBlich durch Strahlung

angenommen wird. Numerische Losungen zeigen, daB das Vorhandensein des Spalts die Zeit bis zum

vollstindigen Erstarren vergroBert und erkldren frilhere-——im Vergleich zu Beobachtungen in der
Stahlindustrie—zu niedrige Schétzungen der Erstarrungsdauer.

BJIMAHUE VCAJKHA HA MHTEHCUBHOCTb 3ATBEPJEBAHUSA LIMIWH/PHYECKOH
OTJIMBKH

Annotanmua —- [To Mepe oXJax[AeHHs OTJMBKH 3aTBepiAcBaroilas € 4acTb CKHMACTCH, MU MEXIY

oTnuBKO} ¥ dopmoit obpasyercs HeGonbuwioi 3a30p. C yyéTOM HaJHYMS TAKOIO 3a30pa chopMy-

JMPOBaHbl YPAaBHEHUS, B KOTOPHIX [MPEANOJAraercsi, 4TO MEPEHOC Temia OCYIIECTBIAETCH TOJBKO

m3nydenreM. C NOMOUIBIO YHC/ICHHBIX PELIEHHMH NMOKa3aHO, YTO 3a30p YBEJMYMBACT BPEMS MOJHOTO

3aTBEPIEBAHHS OTJIMBKM, W JaHO OOBACHEHHE NONYYEHHBIM paHee 3aHIKCHHBIM 3HAYCHUSM HTOTO
BPEMEHH 11O CPABHEHHIO C TaHHBIMHU CTANEINTEHHON NPOMBILLNICHHOCTH,



